Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Velocity of Propagation of Electromagnetic Waves Derived from the Resonant Frequencies of a Cylindrical Cavity Resonator

L. Essen and A. C. Gordon-Smith
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 194, No. 1038 (Sep. 2, 1948), pp. 348-361
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/98293
Page Count: 14
  • Read Online (Free)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Velocity of Propagation of Electromagnetic Waves Derived from the Resonant Frequencies of a Cylindrical Cavity Resonator
Preview not available

Abstract

The frequency of resonance of an evacuated cavity resonator in the form of a right circular cylinder is given by the formula f = v$_{0}\surd \left[\left(\frac{r}{\pi D}\right)^{2}+\left(\frac{n}{2L}\right)^{2}\right]$ $\left[1-\frac{1}{2Q}\right]$, in which v0 is the free-space velocity of electromagnetic waves, D and L are the internal diameter and length respectively of the cylinder, r is a constant for a particular mode of resonance, n is the number of half-wave-lengths in the resonator and Q is the quality factor. Assuming the validity of this equation the value of v0 can be obtained from measured values of f, D, L and Q. A copper cylinder of diameter approximately 7· 4 cm. and length 8· 5 cm. was constructed with the greatest uniformity of diameter and squareness of end-faces and its dimensions were measured. The resonant frequencies for a number of different modes were measured and experiments were made to show that the effects on frequency of the coupling probes to the oscillator and detector were negligibly small. It was concluded from these measurements that the most favourable experimental conditions can be obtained for the E010 and E011 modes. Final measurements on these gave v0 = 299,792 km./sec. The estimated maximum error of the result is 9 km./sec. (3 parts in 105). This is the error of a single measurement and, since most of the errors are not necessarily random, little is gained by making a large number of measurements. The value is 16 km./sec. greater than the recently determined values of the velocity of light, although the results are not in disagreement when the combined limits of accuracy are taken into account.

Page Thumbnails

  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356
  • Thumbnail: Page 
357
    357
  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361