Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Steady Flow in the Laminar Boundary Layer of a Gas

C. R. Illingworth
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 199, No. 1059 (Dec. 7, 1949), pp. 533-558
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/98362
Page Count: 26
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Steady Flow in the Laminar Boundary Layer of a Gas
Preview not available

Abstract

If the boundary-layer equations for a gas are transformed by Mises's transformation, as was done by Kármán & Tsien for the flow along a flat plate of a gas with unit Prandtl number σ , the computation of solutions is simplified, and use may be made of previously computed solutions for an incompressible fluid. For any value of the Prandtl number, and any variation of the viscosity μ with the temperature T, after the method has been applied to flow along a flat plate (a problem otherwise treated by Crocco), the flow near the forward stagnation point of a cylinder is calculated with dissipation neglected, both with the effect of gravity on the flow neglected and with this effect retained for vertical flow past a horizontal cylinder. The approximations involved by the neglect of gravity are considered generally, and the cross-drift is calculated when a horizontal stream flows past a vertical surface. When σ = 1, $\mu \propto $ T, and the boundary is heat-insulated, it is shown that the boundary-layer equations for a gas may be made identical, whatever be the main stream, with the boundary-layer equations for an incompressible fluid with a certain, determinable, main stream. The method is also applied to free convection at a flat plate (with the heat of dissipation and the variation with altitude of the state of the surrounding fluid neglected) and to laminar flow in plane wakes, but for plane jets the conditions σ = 1, $\mu \propto $ T, previously imposed by Howarth, are also imposed here in order to obtain simple solutions.

Page Thumbnails

  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540
  • Thumbnail: Page 
541
    541
  • Thumbnail: Page 
542
    542
  • Thumbnail: Page 
543
    543
  • Thumbnail: Page 
544
    544
  • Thumbnail: Page 
545
    545
  • Thumbnail: Page 
546
    546
  • Thumbnail: Page 
547
    547
  • Thumbnail: Page 
548
    548
  • Thumbnail: Page 
549
    549
  • Thumbnail: Page 
550
    550
  • Thumbnail: Page 
551
    551
  • Thumbnail: Page 
552
    552
  • Thumbnail: Page 
553
    553
  • Thumbnail: Page 
554
    554
  • Thumbnail: Page 
555
    555
  • Thumbnail: Page 
556
    556
  • Thumbnail: Page 
557
    557
  • Thumbnail: Page 
558
    558