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Test of Deviation from Neutrality
The neutrality test developed here detects in which cases Hubbell’s model cannot explain the observed species
abundance distribution. Hubbell’s model makes use of two parameters:v describes the regional diversity, while
m describes the immigration rate into the local community. Increasingv or m leads to local communities with
larger species richnessS (fig. A1A). Jabot and Chave (2009) showed that in neutral communities of same
richness (hence with parametersv andm located close to a level line in fig. A1A), Shannon’s indexH is a
unimodal function ofv (fig. A1B; fig. 1 in Jabot and Chave 2009). The range ofH values typically produced by
neutral simulations does not encompass all possible values from 0 to , hence two zones ofH values areln (S)
outside of the neutral range and correspond to communities where neutrality can be rejected based on species
abundance distribution (fig. A1B). Lower H values than expected under neutrality can be reproduced with our
model with positived while largerH values can be reproduced with negatived.

Our neutrality test contains four steps. First, the neutral parametersv andm are estimated from the species
abundance distribution of a particular data set. This estimation is performed with the software TeTame (Jabot et
al. 2008, http://www.edb.ups-tlse.fr/equipe1/chave/tetame.htm). This program uses the likelihood formula of
Etienne (2005) to estimate the neutral parameters by maximum likelihood. In some cases, there are two different
local maximaL1 andL2 for this likelihood in the parameter space (Etienne et al. 2006). In such cases, two
different estimates for the parameters are found by the software TeTame, with respective weights of evidencew1

andw2 given by (Burnham and Anderson 2002):

L1w p , (A1)1 L � L1 2

L2w p . (A2)2 L � L1 2

Second, the estimated values ofv andm are used to simulate neutral communities. When there are two local
maximaL1 andL2 in the likelihood profile, the first parameter set is used for simulations, and the1,000# w1

second parameter set for the remaining simulations. This choice of using both parameter estimates is1,000# w2

done for two reasons. First, pragmatically, in some cases , or they are so close that their difference isL p L1 2

missed numerically. Second, even in cases where one maximum is clearly the global maximum likelihood (L !1

or ), we want to be sure that the data set cannot be reproduced by any of these locally best fitL L ! L2 2 1

parameterization of the neutral model. Using only the global maximum or one of the two equal local maximum
would produce similar results (data not shown). Simulations make use of the algorithm proposed by Etienne
(2005). In the simulations, the only inputs arev, m, andJ, the size of the community that we take equal to the
one of the tested data set. Simulations produce communities of variable species richnessS. Since we want to test
whether best-fit neutral communities produce Shannon’s indexH comparable to what is observed in real data
and sinceH is correlated with species richnessS, we need to control for variation inS in the simulations. We do
this by retaining only simulations which have the same species richness as in the tested data set. We run the
simulations until 1,000 such compatible communities are simulated.

Third, for each retained simulated community, we compute Shannon’s indexH. Hence, we obtain a null
distribution ofH values depicting the range of equitability values produced by the neutral model that best fits the

http://www.edb.ups-tlse.fr/equipe1/chave/tetame.htm
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tested data set. Fourth, theH value computed in the tested data set is compared to the null distribution ofH
values to test whether the data set is well described by this neutral model.

Details on the Simulation Algorithm Used in the ABC Procedure

Step 1: Simulation of a Large Neutral Community of Size Jn

This simulation step is achieved with the algorithm proposed by Etienne (2005). This algorithm sequentially
draws theJn community members and determines which species they belong to as a function of the previous
draws and of the parametersv and (eq. [7]). The procedure consists of using aI p [m # (J � 1)]/(1 � m)n

double label for each individualk: one for its speciessk and one for its ancestryak. Then, the probabilitypl(j) for
the jth drawn individual of belonging to ancestryl given the previous draws and the probability(a , ... ,a )1 j�1

qm(j) for the jth drawn individual of belonging to speciesm given the previous draws (s , ... ,s , a , ... ,a )1 j�1 1 j

can be expressed as (Etienne 2005)

p ( j) p 0 (A3)l

if ,l 1 A � 1

I
p ( j) p (A4)l I � j � 1

if , andl p A � 1

� 1(a p l)k!k j
p ( j) p (A5)l I � j � 1

if , where A is the number of different ancestry labels in the ( ) draws, and 1(x) is a function thatl ! A � 1 j � 1
equals 1 ifx is true and 0 otherwise.

q ( j) p 0 (A6)m

if ,m 1 S � 1

v
q ( j) p (A7)m

v � A

if and ,m p S � 1 a p A � 1j

� 1(s p m) # 1(a � ∪ a )!k k n k n!k j
q ( j) p (A8)m

v � A

if and , andm ! S � 1 a p A � 1j

q ( j) p 1(s p m) (A9)m k min ( j)

if and , whereS is the number of different species labels in the ( ) draws, andm ! S � 1 a ! A � 1 j � 1j

.k min ( j) p min {k/a � ∪ a }j n≤k n

Step 2: Simulation of a Nonneutral Community of Size J KJn

The nonneutral community of sizeJ is initialized by a random draw from the larger neutral community of size
Jn. This local community is used as an initial condition, from which the nonneutral dynamics starts. In this
nonneutral dynamics, each individual dies at rate , where stands for the local abundance of speciesi, and�dN Ni i

is replaced by the descendant of an individual chosen at random in the larger (fixed) neutral community of size
Jn. To speed up this dynamics, a tenth of the individuals die simultaneously in the local community and are then
replaced simultaneously. One hundred such death-recruitment cycles are performed (i.e., each individual dies and
is replaced 10 times on average) to ensure that the dynamic nonneutral equilibrium is reached (see below).
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Details of the Approximate Bayesian Computation (ABC) Method

Local nonneutral communities were simulated using a forward-in-time algorithm for a time sufficient to reach a
dynamic equilibrium. Several assumptions were made: (a) number of iterations in the forward-in-time dynamics,
(b) size of the large neutral community, and (c) number of simultaneous deaths in the forward dynamics.
Sensitivity of our results to these assumptions is discussed below.

a) We simulated 100 cycles of death of one-tenth of the community (thus 10 generation cycles). We also ran
ABC simulations with 200 cycles of death and computed the correlation between ABCd estimates in the
Panama Canal watershed (PCW) data set with 100 cycles of death and those with 200 cycles of death. We
obtained anR2 of 98%.

b) We then tested that is sufficiently large for the initial neutral metacommunity. We performedJ p 10,000n

ABC simulations with individuals. We computed the correlation between ABCd estimates in theJ p 20,000n

PCW data set with large neutral community sizes 10,000 and 20,000. We obtained anR2 of 96%.
c) To speed up ABC simulations, we assumed that 10% of the community died simultaneously during the

forward dynamics. We also performed ABC simulations with only one-twentieth of the community dying at the
same time (and did 200 such death cycles instead of the 100 so that the total community turnover is the same).
We computed the correlation between the ABCd estimates in the PCW data set with this alternative disturbance
rate and with the original one. We obtained aR2 of 97%.

Why Can the ABC Method Infer d But Not the Three Parameters Jointly?

Hubbell’s model fails to explain the evenness of the species abundance distribution in some plots. This is why
our nonneutral parameterd can be estimated from such data. For each (J, S) combination observed in the PCW
plots, we simulated 100 communities with randomly drawn parametersv, m, andd and inferred thed value by
ABC (see “Methods” in the main text). We then computed the correlation coefficientR2 between simulated and
inferredd values. TheseR2 values measure the estimation efficiency of the ABC method for each (J, S)
combination. We found that the estimation efficiency of our method is fairly good for sample sizes ofJ above
200 individuals and does not increase much with sample size once this threshold is reached (fig. A2).
Furthermore, this estimation presents little bias: the slope of the regression between simulated and inferred values
has a median value of 0.79 and ranges from 0.61 to 0.93, while the intercept has a median value of�0.02 and
ranges from�0.09 to 0.02 (excluding the plot where ). Note also that this small contraction of2R p 0.27
inferred values toward zero and this small bias toward negatived values make our finding of positived values in
real plots conservative. Similar results were obtained using (J, S) values corresponding to the ones in the large
plots.

Although d can be estimated, we cannot jointly estimatev andm (see Etienne et al. 2006; Jabot and Chave
2009). The joint posterior distribution of these last two parameters forms a ridge (similar to the one in fig. A1A),
and the position ofv andm on this ridge cannot be estimated. Adding new summary statistics did not change
this, reflecting the fact that a species abundance distribution alone is insufficient to jointly infer all the model
parameters. In a recent paper where we presented an ABC approach to infer the two neutral parametersv andm
(Jabot and Chave 2009), we argued that phylogenetic information was necessary to accurately estimate these
parameters. We showed that the statistics of phylogenetic tree shapeB1 (Shao and Sokal 1990) was positively
correlated with and provided key information to locate the best-fit neutral parameters on their ridge of highln (v)
likelihood values. Here, we consider smaller communities than in our previous article (J of the order of 500,
compared to 20,000 in Jabot and Chave 2009). For such sample sizes, phylogenies do not contain any more
valuable information, since the variance in phylogenetic tree shape due to the stochasticity of the neutral model
becomes far greater than the variation of phylogenetic tree shape linked to parameter values (fig. A4). We thus
cannot use phylogenetic information here to improve parameter estimation.

Output of the Nonneutral Model Fit to the 10 Large Smithsonian Tropical Research
Institute Center for Tropical Forest Science Plots

To visualize graphically the improvement in fit brought by our nonneutral model, we simulated 100 nonneutral
communities with parameter values drawn in the posterior distribution for each of the 10 large plots, retaining
only those with a species richnessS equal to the one observed in the plot. The average ranked species
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abundance distribution and associated standard deviations were computed for each plot (fig. A3). The fit is better
than the one of the neutral model, although three plots (Lambir, Lenda, and Yasuni) are still not very well
modeled by our nonneutral model.

Location of the Published Data Used in This Article

The first data set (large plots) can be downloaded at http://www.sciencemag.org/content/suppl/2006/06/08/
1124712.DC1/1124712SupportData.zip. The second data set (small plots) can be downloaded at http://
www.sciencemag.org/content/suppl/2002/01/24/295.5555.666.DC1/ConditWebTable.xls

Figure A1: Principle of the neutrality test.A, Schematic representation of the variation in local species richness in neutral
communities (represented by the level of gray) as a function of the neutral parametersv andm. Black curves represent parameter
regions leading to constant richness.B, Shannon’s indexH values typically encountered along a line of constant richness as a
function of parameterv. Each cross represents theH value obtained in a neutral community with a particularv value.H values
below the inferior dotted line or above the superior dotted line are very unlikely to be encountered in neutral communities. In
contrast, communities simulated with our nonneutral model have a wider range ofH values, depending on thed value used in
the simulations. Communities simulated with positive (respectively, negative)d values are likely to occur below the inferior
(respectively, above the superior) dotted line.

http://www.sciencemag.org/content/suppl/2006/06/08/1124712.DC1/1124712SupportData.zip
http://www.sciencemag.org/content/suppl/2006/06/08/1124712.DC1/1124712SupportData.zip
http://www.sciencemag.org/content/suppl/2002/01/24/295.5555.666.DC1/ConditWebTable.xls
http://www.sciencemag.org/content/suppl/2002/01/24/295.5555.666.DC1/ConditWebTable.xls
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Figure A2: Effect of sample sizeJ on the estimation efficiency ofd in the Panama Canal watershed data set.
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Figure A3: Fit of the nonneutral model for the 10 large Smithsonian Tropical Research Institute Center for Tropical Forest Science plots. The red lines stand forobserved rank
abundance curves. The black dashed lines represent nonneutral species rank abundance curves averaged over 100 simulations with parameters drawn inthe posterior distributions.
Gray bars represent standard deviations. The green dotted lines represent neutral species rank abundance curves averaged over 100 simulations withbest-fit parameters.
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Figure A4: Phylogenetic tree shape (measured byB1) no longer contains information onv for small sample size ;B1J p 500
values in 300 simulated neutral communities of size and species richness . There is no significant positiveJ p 500 S p 100
relationship between andB1, contrary to what happens for larger sample sizes of individuals (see Jabot andln (v) J p 20,000
Chave 2009).

Table A1. Test of deviation from neutrality and val-
ues of the parameterd in each plot of the Panama
Canal watershed

Plot J S H P value d

P 01 400 63 3.13 !.001 .68
P 02 409 84 3.90 .42 �.04
P 03 365 74 3.82 .49 �.16
P 04 450 94 4.06 .50 �.16
P 05 364 71 3.43 .01 .57
P 06 480 78 3.62 .12 .27
P 07 380 93 3.95 .13 .26
P 08 560 94 3.54 !.001 .68
P 09 503 107 3.91 .008 .47
P 10 403 78 3.65 .089 .34
P 11 449 75 3.43 .009 .52
P 12 520 74 3.33 .009 .57
P 13 647 60 2.44 !.001 .79
P 14 381 92 3.93 .14 .26
P 15 457 91 3.91 .29 .16
P 16 467 90 3.69 .014 .52
P 17 461 63 3.02 .002 .70
P 18 429 86 3.89 .48 .07
P 19 519 89 3.66 .016 .45
P 20 534 90 3.70 .037 .39
P 21 405 78 3.76 .38 .12
P 22 508 75 3.37 .009 .56
P 23 579 60 2.70 !.001 .79
P 24 557 60 2.95 .012 .62
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Table A1 (Continued)

Plot J S H P value d

P 25 593 84 3.80 .57 �.01
P 26 485 76 3.41 .009 .53
P 27 393 61 3.44 .26 .12
P 28 410 63 3.34 .08 .37
P 29 356 65 3.33 .023 .51
P 30 302 64 3.16 !.001 .75
P 31 483 159 4.60 .10 .24
P 32 158 105 4.50 .34 �.46
P 33 191 85 4.10 .20 .27
P 34 172 69 3.79 .046 .47
P 35 186 79 3.95 .027 .46
P 36 254 88 4.04 .18 .26
P 37 257 100 4.20 .08 .29
P 38 267 94 4.21 .49 �.23
P 39 202 64 3.76 .41 �.10
P 40 134 48 3.20 !.001 .76
P 41 222 84 3.84 .001 .65
C 1 281 49 3.19 .17 .29
C 2 255 48 2.95 .008 .67
C 3 249 54 3.26 .041 .48
C 4 294 61 3.26 .008 .62
S 0 464 90 3.84 .18 .24
S 1 531 77 3.74 .49 �.10
S 2 500 68 3.56 .48 .06
S 3 516 75 3.82 .59 �.37
S 4 849 70 3.16 .039 .44
BCI 1 448 93 4.02 .54 �.14
BCI 2 435 84 3.85 .44 .08
BCI 3 463 90 3.81 .12 .28
BCI 4 508 94 3.98 .38 �.02
BCI 5 505 101 3.97 .17 .19
BCI 6 412 85 3.78 .10 .29
BCI 7 416 82 3.84 .42 .05
BCI 8 431 88 3.91 .20 .07
BCI 9 409 90 3.76 .013 .46
BCI 10 483 94 3.89 .18 .22
BCI 11 401 87 3.86 .22 .19
BCI 12 366 84 3.70 .009 .48
BCI 13 409 93 3.98 .21 .09
BCI 14 438 98 4.02 .31 .12
BCI 15 462 93 3.96 .37 .08
BCI 16 437 93 3.92 .18 .21
BCI 17 381 93 3.74 !.001 .61
BCI 18 347 89 3.94 .18 .19
BCI 19 433 109 4.01 .01 .43
BCI 20 429 100 4.08 .46 .09
BCI 21 408 99 3.97 .07 .34
BCI 22 418 91 3.76 .012 .49
BCI 23 340 99 4.06 .10 .26
BCI 24 392 95 3.98 .16 .23
BCI 25 442 105 4.07 .18 .19
BCI 26 407 91 3.95 .33 .13
BCI 27 417 99 3.98 .08 .26
BCI 28 387 85 3.69 .017 .48
BCI 29 364 86 3.69 .005 .58
BCI 30 475 97 3.85 .03 .36
BCI 31 421 77 3.72 .38 .11
BCI 32 459 88 3.78 .06 .29
BCI 33 436 86 3.74 .048 .35
BCI 34 447 92 3.82 .054 .33
BCI 35 601 83 2.64 !.001 .80
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Table A1 (Continued)

Plot J S H P value d

BCI 36 430 92 3.85 .07 .32
BCI 37 435 88 3.79 .038 .28
BCI 38 447 82 3.52 .005 .55
BCI 39 424 84 3.53 .001 .63
BCI 40 489 80 3.23 !.001 .74
BCI 41 402 102 4.05 .11 .25
BCI 42 414 87 3.97 .49 �.15
BCI 43 407 86 3.74 .024 .40
BCI 44 409 81 3.71 .098 .31
BCI 45 444 81 3.61 .027 .40
BCI 46 430 86 3.81 .17 .21
BCI 47 425 102 3.92 .015 .46
BCI 48 415 91 3.91 .22 .18
BCI 49 427 91 3.78 .021 .42
BCI 50 432 93 3.91 .16 .21
BCI 1-2-6-7 1,711 139 4.06 .27 .15
BCI 3-4-8-9 1,811 136 4.06 .17 .11
BCI 11-12-16-17 1,585 149 4.02 .02 .33
BCI 13-14-18-19 1,627 155 4.25 .12 .12
BCI 21-22-26-27 1,650 153 4.16 .08 .18
BCI 23-24-28-29 1,483 150 4.10 .029 .26
BCI 31-32-36-37 1,745 135 4.01 .19 .18
BCI 33-34-38-39 1,754 131 3.82 .019 .34
BCI 41-42-46-47 1,671 154 4.20 .08 .14
BCI 43-44-48-49 1,658 138 3.98 .06 .24
BCI 1–10 4,510 170 4.14 .17 .09
BCI 11–20 4,103 187 4.29 .10 .08
BCI 21–30 4,050 183 4.24 .08 .11
BCI 31–40 4,589 167 3.90 .028 .3
BCI 41–50 4,205 177 4.16 .07 .14

Note: J p sample size,S p species richness,H p Shannon’s index.
Bold numbers indicateP values under .05. The plot grouping at Barro
Colorado Island was performed among contiguous plots. These data
were used to construct figure 2 in the main text.
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