If you need an accessible version of this item please contact JSTOR User Support

Twelve Points in PG(5, 3) with 95040 Self-Transformations

H. S. M. Coxeter
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 247, No. 1250 (Sep. 30, 1958), pp. 279-293
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/100667
Page Count: 15
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Twelve Points in PG(5, 3) with 95040 Self-Transformations
Preview not available

Abstract

The title of this paper could have been 'Geometry in five dimensions over GF(3)' (cf. Edge 1954), or 'The geometry of the second Mathieu group', or 'Duads and synthemes', or 'Hexastigms', or simply 'Some thoughts on the number 6'. The words actually chosen acknowledge the inspiration of the late H. F. Baker, whose last book (Baker 1946) develops the idea of duads and synthemes in a different direction. The special property of the number 6 that makes the present development possible is the existence of an outer automorphism for the symmetric group of this degree. The consequent group of order 1440 is described abstractly in § 1, topologically in § 2, and geometrically in §§ 3 to 7. The kernel of the geometrical discussion is in § 5, where the chords of a non-ruled quadric in the finite projective space PG(3, 3) are identified with the edges of a graph having an unusually high degree of regularity (Tutte 1958). It is seen in § 4 that the ten points which constitute this quadric can be derived very simply from a 'hexastigm' consisting of six points in PG(4, 3) (cf. Coxeter 1958). The connexion with Edge's work is described in § 6. Then § 7 shows that the derivation of the quadric from a hexastigm can be carried out in two distinct ways, suggesting the use of a second hexastigm in a different 4-space. It is found in § 8 that the consequent configuration of twelve points in PG(5, 3) can be divided into two hexastigms in 66 ways. The whole set of 132 hexastigms forms a geometrical realization of the Steiner system S(5, 6, 12), whose group is known to be the quintuply transitive Mathieu group M12, of order 95040. Finally, § 9 shows how the same 5-dimensional configuration can be regarded (in 396 ways) as a pair of mutually inscribed simplexes, like Mobius's mutually inscribed tetrahedra in ordinary space of 3 dimensions.

Page Thumbnails

  • Thumbnail: Page 
279
    279
  • Thumbnail: Page 
280
    280
  • Thumbnail: Page 
281
    281
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293