Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Earliest Triassic Origin of Isoetes and Quillwort Evolutionary Radiation

Gregory J. Retallack
Journal of Paleontology
Vol. 71, No. 3 (May, 1997), pp. 500-521
Published by: Paleontological Society
Stable URL: http://www.jstor.org/stable/1306630
Page Count: 22
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Earliest Triassic Origin of Isoetes and Quillwort Evolutionary Radiation
Preview not available

Abstract

Isoetes beestonii new species is the most ancient known species of this living genus. In earliest Triassic shales of the Sydney and Bowen Basins of Australia it is locally abundant as circlets of transversely wrinkled leaves. It was heterosporous with megaspores of Maiturisporites rewanensis and microspores of Lundbladispora sp. cf. L. springsurensis. Isoetes thus predates Pleuromeia from which it has been thought to have evolved. Australian Pleuromeia-like subarborescent lycopsids are here reviewed as whole plants, with names based on fertile structures, and include Cylostrobus sydneyensis Helby and Martin from the Sydney Basin, Pleuromeia dubia (Seward) Retallack from the Sydney and Canning Basins, and Cylostrobus indicus (Lele) new combination and Pleuromeia sternbergii (Münster) Corda for Germar, newly recorded from the Canning Basin. There are in addition an array of cormose lycopsids that formed compact conelike plants when fertile, intermediate in stature between Isoetes and Pleuromeia. One of these is Tomiostrobus australis (Ash) Sadovnikov, formerly regarded as a cone, but here reinterpreted as a small pioneering plant of oligotrophic lakes and ponds, like Isoetes. Its megaspores are Horstisporites and its microspores are the stratigraphically important Aratrisporites tenuispinosus. Other similar forms are Tomiostrobus polaris (Lundblad) new combination from the early Triassic of Greenland, T. mirabilis (Snigirevskaya) new combination from the early Triassic of the Tunguska Basin of Siberia, T. taimyrica (Sadovnikov) new combination from the Early Triassic of the Taimyr region of Siberia, Lepacyclotes ermayinensis (Wang) new combination from the middle Triassic of China, L. convexus (Brik) new combination from the middle-late Triassic of Kazachstan, and L. zeilleri (Fliche) new combination from the middle Triassic of France and Germany. The diversity of isoetaleans in early Triassic floras and the weak vascular system of permineralized Tomiostrobus and Pleuromeia contradict the traditional view that Isoetes evolved by reduction in size from Pleuromeia and that its opportunistic life style allowed it to avoid plant competition. It is now more likely that Isoetaceae were weedy survivors of Permian-Triassic extinctions. The adaptive radiation and decline of Triassic quillworts matches the recovery from near-extinction, then decline of therapsid reptiles, for which these plants may have been an important food.

Page Thumbnails

  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503
  • Thumbnail: Page 
504
    504
  • Thumbnail: Page 
505
    505
  • Thumbnail: Page 
506
    506
  • Thumbnail: Page 
507
    507
  • Thumbnail: Page 
508
    508
  • Thumbnail: Page 
509
    509
  • Thumbnail: Page 
510
    510
  • Thumbnail: Page 
511
    511
  • Thumbnail: Page 
512
    512
  • Thumbnail: Page 
513
    513
  • Thumbnail: Page 
514
    514
  • Thumbnail: Page 
515
    515
  • Thumbnail: Page 
516
    516
  • Thumbnail: Page 
517
    517
  • Thumbnail: Page 
518
    518
  • Thumbnail: Page 
519
    519
  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521