This paper considers estimation and hypothesis tests for coefficients of linear regression models, where the coefficient estimates are based on location measures defined by an asymmetric least squares criterion function. These asymmetric least squares estimators have properties which are analogous to regression quantile estimators, but are much simpler to calculate, as are the corresponding test statistics. The coefficient estimators can be used to construct test statistics for homoskedasticity and conditional symmetry of the error distribution, and we find these tests compare quite favorably with other commonly-used tests of these null hypotheses in terms of local relative efficiency. Consequently, asymmetric least squares estimation provides a convenient and relatively efficient method of summarizing the conditional distribution of a dependent variable given the regressors, and a means of testing whether a linear model is an adequate characterization of the "typical value" for this conditional distribution.
Econometrica publishes original articles in all branches of economics - theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area. It promotes studies that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics each year - from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in econometrics.
The Econometric Society is an international society for the advancement of economic theory in its relation to statistics and mathematics.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Econometrica
© 1987 The Econometric Society
Request Permissions