Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher

John Rust
Econometrica
Vol. 55, No. 5 (Sep., 1987), pp. 999-1033
Published by: The Econometric Society
DOI: 10.2307/1911259
Stable URL: http://www.jstor.org/stable/1911259
Page Count: 35
  • Get Access
  • Read Online (Free)
  • Download ($10.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Optimal Replacement of GMC Bus Engines: An Empirical Model of Harold Zurcher
Preview not available

Abstract

This paper formulates a simple regenerative optimal stopping model of bus engine replacement to describe the behavior of Harold Zurcher, superintendent of maintenance at the Madison (Wisconsin) Metropolitan Bus Company. The null hypothesis is that Zurcher's decisions on bus engine replacement coincide with an optimal stopping rule: a strategy which specifies whether or not to replace the current bus engine each period as a function of observed and unobserved state variables. The optimal stopping rule is the solution to a stochastic dynamic programming problem that formalizes the trade-off between the conflicting objectives of minimizing maintenance costs versus minimizing unexpected engine failures. The model depends on unknown "primitive parameters" which specify Zurcher's expectations of the future values of the state variables, the expected costs of regular bus maintenance, and his perceptions of the customer goodwill costs of unexpected failures. Using ten years of monthly data on bus mileage and engine replacements for a subsample of 104 buses in the company fleet, I estimate these primitive parameters and test whether Zurcher's behavior is consistent with the model. Admittedly, few people are likely to take particular interest in Harold Zurcher and bus engine replacement per se. I focus on a specific individual and capital good because it provides a simple, concrete framework to illustrate two ideas: (i) a "bottom-up" approach for modelling replacement investment, and (ii) a "nested fixed point" algorithm for estimating dynamic programming models of discrete choice.

Page Thumbnails

  • Thumbnail: Page 
999
    999
  • Thumbnail: Page 
1000
    1000
  • Thumbnail: Page 
1001
    1001
  • Thumbnail: Page 
1002
    1002
  • Thumbnail: Page 
1003
    1003
  • Thumbnail: Page 
1004
    1004
  • Thumbnail: Page 
1005
    1005
  • Thumbnail: Page 
1006
    1006
  • Thumbnail: Page 
1007
    1007
  • Thumbnail: Page 
1008
    1008
  • Thumbnail: Page 
1009
    1009
  • Thumbnail: Page 
1010
    1010
  • Thumbnail: Page 
1011
    1011
  • Thumbnail: Page 
1012
    1012
  • Thumbnail: Page 
1013
    1013
  • Thumbnail: Page 
1014
    1014
  • Thumbnail: Page 
1015
    1015
  • Thumbnail: Page 
1016
    1016
  • Thumbnail: Page 
1017
    1017
  • Thumbnail: Page 
1018
    1018
  • Thumbnail: Page 
1019
    1019
  • Thumbnail: Page 
1020
    1020
  • Thumbnail: Page 
1021
    1021
  • Thumbnail: Page 
1022
    1022
  • Thumbnail: Page 
1023
    1023
  • Thumbnail: Page 
1024
    1024
  • Thumbnail: Page 
1025
    1025
  • Thumbnail: Page 
1026
    1026
  • Thumbnail: Page 
1027
    1027
  • Thumbnail: Page 
1028
    1028
  • Thumbnail: Page 
1029
    1029
  • Thumbnail: Page 
1030
    1030
  • Thumbnail: Page 
1031
    1031
  • Thumbnail: Page 
1032
    1032
  • Thumbnail: Page 
1033
    1033