Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

Econometric Estimation of Stochastic Differential Equation Systems

C. R. Wymer
Econometrica
Vol. 40, No. 3 (May, 1972), pp. 565-577
Published by: The Econometric Society
DOI: 10.2307/1913185
Stable URL: http://www.jstor.org/stable/1913185
Page Count: 13
Were these topics helpful?
See somethings inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Econometric Estimation of Stochastic Differential Equation Systems
Preview not available

Abstract

An exact discrete model is derived from a recursive model consisting of a set of rth order stochastic linear differential equations with constant coefficients such that observations generated at equidistant points of time by the differential system satisfy the discrete model irrespective of the length of sampling interval. The difficulty of estimating the exact model subject to a priori restrictions makes it necessary to approximate the differential system by a non-recursive discrete model that maintains the structural form. This discrete model has a moving average disturbance term of order r - 1, but the co-variance function of this process is approximated by a function that is independent of the parameters of the continuous model. The eigenvalues and eigenvectors of the approximations to the differential system as well as their asymptotic variance matrices are also derived but, like the approximate asymptotic variance matrices of the parameter estimates, these variances are about biased probability limit

Page Thumbnails

  • Thumbnail: Page 
565
    565
  • Thumbnail: Page 
566
    566
  • Thumbnail: Page 
567
    567
  • Thumbnail: Page 
568
    568
  • Thumbnail: Page 
569
    569
  • Thumbnail: Page 
570
    570
  • Thumbnail: Page 
571
    571
  • Thumbnail: Page 
572
    572
  • Thumbnail: Page 
573
    573
  • Thumbnail: Page 
574
    574
  • Thumbnail: Page 
575
    575
  • Thumbnail: Page 
576
    576
  • Thumbnail: Page 
577
    577