Often maximum likelihood is the method of choice for fitting an econometric model to data but cannot be used because the correct specification of the (multivariate) density that defines the likelihood is unknown. Regression with sample selection is an example. In this situation, simply put the density equal to a Hermite series and apply standard finite dimensional maximum likelihood methods. Model parameters and nearly all aspects of the unknown density itself will be estimated consistently provided that the length of the series increases with sample size. The rule for increasing series length can be data dependent. To assure in-range estimates, the Hermite series is in the form of a polynomial squared times a normal density function with the coefficients of the polynomial restricted so that the series integrates to one and has mean zero. If another density is more plausible a priori, it may be substituted for the normal. The paper verifies these claims and applies the method to nonlinear regression with sample selection and to estimation of the Stoker functional.
Econometrica publishes original articles in all branches of economics - theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area. It promotes studies that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics each year - from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in econometrics.
The Econometric Society is an international society for the advancement of economic theory in its relation to statistics and mathematics.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Econometrica
© 1987 The Econometric Society
Request Permissions