A simple minimization problem yielding the ordinary sample quantiles in the location model is shown to generalize naturally to the linear model generating a new class of statistics we term "regression quantiles." The estimator which minimizes the sum of absolute residuals is an important special case. Some equivariance properties and the joint asymptotic distribution of regression quantiles are established. These results permit a natural generalization of the linear model of certain well-known robust estimators of location. Estimators are suggested, which have comparable efficiency to least squares for Gaussian linear models while substantially out-performing the least-squares estimator over a wide class of non-Gaussian error distributions.
Econometrica publishes original articles in all branches of economics - theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area. It promotes studies that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics each year - from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in econometrics.
The Econometric Society is an international society for the advancement of economic theory in its relation to statistics and mathematics.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Econometrica
© 1978 The Econometric Society
Request Permissions