In recent years more and more emphasis has been placed on model discrimination procedures. In this paper we propose some new procedures for the selection of the most adequate regression model. Properties of those procedures are analyzed and compared. Their relationship with classical informal procedures is fully discussed. Our procedures are called the information criteria because we base our loss function on the Kullback-Leibler information measure of the distance between two probability density functions. The basic framework of our approach was originated by Akaike in his sequence of papers.
Econometrica publishes original articles in all branches of economics - theoretical and empirical, abstract and applied, providing wide-ranging coverage across the subject area. It promotes studies that aim at the unification of the theoretical-quantitative and the empirical-quantitative approach to economic problems and that are penetrated by constructive and rigorous thinking. It explores a unique range of topics each year - from the frontier of theoretical developments in many new and important areas, to research on current and applied economic problems, to methodologically innovative, theoretical and applied studies in econometrics.
The Econometric Society is an international society for the advancement of economic theory in its relation to statistics and mathematics.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Econometrica
© 1978 The Econometric Society
Request Permissions