Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

On the Zeros of the Riemann Zeta Function in the Critical Strip

Richard P. Brent
Mathematics of Computation
Vol. 33, No. 148 (Oct., 1979), pp. 1361-1372
DOI: 10.2307/2006473
Stable URL: http://www.jstor.org/stable/2006473
Page Count: 12
  • Read Online (Free)
  • Download ($34.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
On the Zeros of the Riemann Zeta Function in the Critical Strip
Preview not available

Abstract

We describe a computation which shows that the Riemann zeta function $\xi(s)$ has exactly 75,000,000 zeros of the form $\sigma + it$ in the region $0 < t < 32,585,736.4;$ all these zeros are simple and lie on the line $\sigma = \frac{1}{2}$. (A similar result for the first 3,5000,000 zeros established by Rosser, Yohe and Schoenfeld.) Counts of the number of Gram blocks of various types and the number of failures of "Rosser's rule" are given.

Page Thumbnails

  • Thumbnail: Page 
1361
    1361
  • Thumbnail: Page 
1362
    1362
  • Thumbnail: Page 
1363
    1363
  • Thumbnail: Page 
1364
    1364
  • Thumbnail: Page 
1365
    1365
  • Thumbnail: Page 
1366
    1366
  • Thumbnail: Page 
1367
    1367
  • Thumbnail: Page 
1368
    1368
  • Thumbnail: Page 
1369
    1369
  • Thumbnail: Page 
1370
    1370
  • Thumbnail: Page 
1371
    1371
  • Thumbnail: Page 
1372
    1372