We give a general framework for deriving a posteriori error estimates for approximate solutions of nonlinear problems. In a first step it is proven that the error of the approximate solution can be bounded from above and from below by an appropriate norm of its residual. In a second step this norm of the residual is bounded from above and from below by a similar norm of a suitable finite-dimensional approximation of the residual. This quantity can easily be evaluated, and for many practical applications sharp explicit upper and lower bounds are readily obtained. The general results are then applied to finite element discretizations of scalar quasi-linear elliptic partial differential equations of 2nd order, the eigenvalue problem for scalar linear elliptic operators of 2nd order, and the stationary incompressible Navier-Stokes equations. They immediately yield a posteriori error estimates, which can easily be computed from the given data of the problem and the computed numerical solution and which give global upper and local lower bounds on the error of the numerical solution.
This journal, begun in 1943 as Mathematical Tables and Other Aids to Computation, publishes original articles on all aspects of numerical mathematics, book reviews, mathematical tables, and technical notes. It is devoted to advances in numerical analysis, the application of computational methods, high speed calculating, and other aids to computation.
Founded in 1888, to further mathematical research and scholarship, the 30,000-member American Mathematical Society provides programs and services that promote mathematical research and its uses, strengthen mathematical education, and foster awareness and appreciation of mathematics and its connections to other disciplines and everyday life. The headquarters of the AMS are in Providence, Rhode Island. The Society also maintains a government relations office in Washington, D.C., the Mathematical Reviews editorial office in Ann Arbor, Michigan, and a warehouse and distribution facility in Pawtucket, Rhode Island. The Society has approximately 240 employees.
This item is part of a JSTOR Collection.
For terms and use, please refer to our
Mathematics of Computation
© 1994 American Mathematical Society