Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Unbiased Estimation of Certain Correlation Coefficients

Ingram Olkin and John W. Pratt
The Annals of Mathematical Statistics
Vol. 29, No. 1 (Mar., 1958), pp. 201-211
Stable URL: http://www.jstor.org/stable/2237306
Page Count: 11
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Unbiased Estimation of Certain Correlation Coefficients
Preview not available

Abstract

This paper deals with the unbiased estimation of the correlation of two variates having a bivariate normal distribution (Sec. 2), and of the intraclass correlation, i.e., the common correlation coefficient of a $p$-variate normal distribution with equal variances and equal covariances (Sec. 3). In both cases, the estimator has the following properties. It is a function of a complete sufficient statistic and is therefore the unique (except for sets of probability zero) minimum variance unbiased estimator. Its range is the region of possible values of the estimated quantity. It is a strictly increasing function of the usual estimator differing from it only by terms of order $1/n$ and consequently having the same asymptotic distribution. Since the unbiased estimators are cumbersome in form in that they are expressed as series or integrals, tables are included giving the unbiased estimators as functions of the usual estimators. In Sec. 4 we give an unbiased estimator of the squared multiple correlation. It has the properties mentioned in the second paragraph except that it may be negative, which the squared multiple correlation cannot. In each case the estimator is obtained by inverting a Laplace transform. We are grateful to W. H. Kruskal and L. J. Savage for very helpful comments and suggestions, and to R. R. Blough for his able computations.

Page Thumbnails

  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211