Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

A General Theory for Jackknife Variance Estimation

Jun Shao and C. F. J. Wu
The Annals of Statistics
Vol. 17, No. 3 (Sep., 1989), pp. 1176-1197
Stable URL: http://www.jstor.org/stable/2241717
Page Count: 22
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
A General Theory for Jackknife Variance Estimation
Preview not available

Abstract

The delete-1 jackknife is known to give inconsistent variance estimators for nonsmooth estimators such as the sample quantiles. This well-known deficiency can be rectified by using a more general jackknife with d, the number of observations deleted, depending on a smoothness measure of the point estimator. Our general theory explains why jackknife works or fails. It also shows that (i) for "sufficiently smooth" estimators, the jackknife variance estimators with bounded d are consistent and asymptotically unbiased and (ii) for "nonsmooth" estimators, d has to go to infinity at a rate explicitly determined by a smoothness measure to ensure consistency and asymptotic unbiasedness. Improved results are obtained for several classes of estimators. In particular, for the sample p-quantiles, the jackknife variance estimators with d satisfying n1/2/d → 0 and n - d → ∞ are consistent and asymptotically unbiased.

Page Thumbnails

  • Thumbnail: Page 
1176
    1176
  • Thumbnail: Page 
1177
    1177
  • Thumbnail: Page 
1178
    1178
  • Thumbnail: Page 
1179
    1179
  • Thumbnail: Page 
1180
    1180
  • Thumbnail: Page 
1181
    1181
  • Thumbnail: Page 
1182
    1182
  • Thumbnail: Page 
1183
    1183
  • Thumbnail: Page 
1184
    1184
  • Thumbnail: Page 
1185
    1185
  • Thumbnail: Page 
1186
    1186
  • Thumbnail: Page 
1187
    1187
  • Thumbnail: Page 
1188
    1188
  • Thumbnail: Page 
1189
    1189
  • Thumbnail: Page 
1190
    1190
  • Thumbnail: Page 
1191
    1191
  • Thumbnail: Page 
1192
    1192
  • Thumbnail: Page 
1193
    1193
  • Thumbnail: Page 
1194
    1194
  • Thumbnail: Page 
1195
    1195
  • Thumbnail: Page 
1196
    1196
  • Thumbnail: Page 
1197
    1197