Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Central Limit Theorems for Empirical Measures

R. M. Dudley
The Annals of Probability
Vol. 6, No. 6 (Dec., 1978), pp. 899-929
Stable URL: http://www.jstor.org/stable/2243028
Page Count: 31
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Central Limit Theorems for Empirical Measures
Preview not available

Abstract

Let $(X, \mathscr{A}, P)$ be a probability space. Let $X_1, X_2,\cdots,$ be independent $X$-valued random variables with distribution $P$. Let $P_n := n^{-1}(\delta_{X_1} + \cdots + \delta_{X_n})$ be the empirical measure and let $\nu_n := n^\frac{1}{2}(P_n - P)$. Given a class $\mathscr{C} \subset \mathscr{a}$, we study the convergence in law of $\nu_n$, as a stochastic process indexed by $\mathscr{C}$, to a certain Gaussian process indexed by $\mathscr{C}$. If convergence holds with respect to the supremum norm $\sup_{C \in \mathscr{C}}|f(C)|$, in a suitable (usually nonseparable) function space, we call $\mathscr{C}$ a Donsker class. For measurability, $X$ may be a complete separable metric space, $\mathscr{a} =$ Borel sets, and $\mathscr{C}$ a suitable collection of closed sets or open sets. Then for the Donsker property it suffices that for some $m$, and every set $F \subset X$ with $m$ elements, $\mathscr{C}$ does not cut all subsets of $F$ (Vapnik-Cervonenkis classes). Another sufficient condition is based on metric entropy with inclusion. If $\mathscr{C}$ is a sequence $\{C_m\}$ independent for $P$, then $\mathscr{C}$ is a Donsker class if and only if for some $r, \sigma_m(P(C_m)(1 - P(C_m)))^r < \infty$.

Page Thumbnails

  • Thumbnail: Page 
899
    899
  • Thumbnail: Page 
900
    900
  • Thumbnail: Page 
901
    901
  • Thumbnail: Page 
902
    902
  • Thumbnail: Page 
903
    903
  • Thumbnail: Page 
904
    904
  • Thumbnail: Page 
905
    905
  • Thumbnail: Page 
906
    906
  • Thumbnail: Page 
907
    907
  • Thumbnail: Page 
908
    908
  • Thumbnail: Page 
909
    909
  • Thumbnail: Page 
910
    910
  • Thumbnail: Page 
911
    911
  • Thumbnail: Page 
912
    912
  • Thumbnail: Page 
913
    913
  • Thumbnail: Page 
914
    914
  • Thumbnail: Page 
915
    915
  • Thumbnail: Page 
916
    916
  • Thumbnail: Page 
917
    917
  • Thumbnail: Page 
918
    918
  • Thumbnail: Page 
919
    919
  • Thumbnail: Page 
920
    920
  • Thumbnail: Page 
921
    921
  • Thumbnail: Page 
922
    922
  • Thumbnail: Page 
923
    923
  • Thumbnail: Page 
924
    924
  • Thumbnail: Page 
925
    925
  • Thumbnail: Page 
926
    926
  • Thumbnail: Page 
927
    927
  • Thumbnail: Page 
928
    928
  • Thumbnail: Page 
929
    929