Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Measures of Association for Cross Classifications

Leo A. Goodman and William H. Kruskal
Journal of the American Statistical Association
Vol. 49, No. 268 (Dec., 1954), pp. 732-764
DOI: 10.2307/2281536
Stable URL: http://www.jstor.org/stable/2281536
Page Count: 33
  • Get Access
  • Download ($14.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Measures of Association for Cross Classifications
Preview not available

Abstract

When populations are cross-classified with respect to two or more classifications or polytomies, questions often arise about the degree of association existing between the several polytomies. Most of the traditional measures or indices of association are based upon the standard chi-square statistic or on an assumption of underlying joint normality. In this paper a number of alternative measures are considered, almost all based upon a probabilistic model for activity to which the cross-classification may typically lead. Only the case in which the population is completely known is considered, so no question of sampling or measurement error appears. We hope, however, to publish before long some approximate distributions for sample estimators of the measures we propose, and approximate tests of hypotheses. Our major theme is that the measures of association used by an empirical investigator should not be blindly chosen because of tradition and convention only, although these factors may properly be given some weight, but should be constructed in a manner having operational meaning within the context of the particular problem.

Page Thumbnails

  • Thumbnail: Page 
732
    732
  • Thumbnail: Page 
733
    733
  • Thumbnail: Page 
734
    734
  • Thumbnail: Page 
735
    735
  • Thumbnail: Page 
736
    736
  • Thumbnail: Page 
737
    737
  • Thumbnail: Page 
738
    738
  • Thumbnail: Page 
739
    739
  • Thumbnail: Page 
740
    740
  • Thumbnail: Page 
741
    741
  • Thumbnail: Page 
742
    742
  • Thumbnail: Page 
743
    743
  • Thumbnail: Page 
744
    744
  • Thumbnail: Page 
745
    745
  • Thumbnail: Page 
746
    746
  • Thumbnail: Page 
747
    747
  • Thumbnail: Page 
748
    748
  • Thumbnail: Page 
749
    749
  • Thumbnail: Page 
750
    750
  • Thumbnail: Page 
751
    751
  • Thumbnail: Page 
752
    752
  • Thumbnail: Page 
753
    753
  • Thumbnail: Page 
754
    754
  • Thumbnail: Page 
755
    755
  • Thumbnail: Page 
756
    756
  • Thumbnail: Page 
757
    757
  • Thumbnail: Page 
758
    758
  • Thumbnail: Page 
759
    759
  • Thumbnail: Page 
760
    760
  • Thumbnail: Page 
761
    761
  • Thumbnail: Page 
762
    762
  • Thumbnail: Page 
763
    763
  • Thumbnail: Page 
764
    764