An exact test of significance of the hypothesis that the row and column effects are independent in an r × c contingency table can be executed in principle by generalizing Fisher's exact treatment of the 2 × 2 contingency table. Each table in a conditional reference set of r × c tables with fixed marginal sums is assigned a generalized hypergeometric probability. The significance level is then computed by summing the probabilities of all tables that are no larger (on the probability scale) than the observed table. However, the computational effort required to generate all r × c contingency tables with fixed marginal sums severely limits the use of Fisher's exact test. A novel technique that considerably extends the bounds of computational feasibility of the exact test is proposed here. The problem is transformed into one of identifying all paths through a directed acyclic network that equal or exceed a fixed length. Some interesting new optimization theorems are developed in the process. The numerical results reveal that for sparse contingency tables Fisher's exact test and Pearson's χ2 test frequently lead to contradictory inferences concerning row and column independence.
The Journal of the American Statistical Association (JASA) has long been considered the premier journal of statistical science. Science Citation Index reported JASA was the most highly cited journal in the mathematical sciences in 1991-2001, with 16,457 citations, more than 50% more than the next most highly cited journals. Articles in JASA focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences and on new methods of statistical education.
Building on two centuries' experience, Taylor & Francis has grown rapidlyover the last two decades to become a leading international academic publisher.The Group publishes over 800 journals and over 1,800 new books each year, coveringa wide variety of subject areas and incorporating the journal imprints of Routledge,Carfax, Spon Press, Psychology Press, Martin Dunitz, and Taylor & Francis.Taylor & Francis is fully committed to the publication and dissemination of scholarly information of the highest quality, and today this remains the primary goal.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Journal of the American Statistical Association
© 1983 American Statistical Association
Request Permissions