Local least squares kernel regression provides an appealing solution to the nonparametric regression, or "scatterplot smoothing," problem, as demonstrated by Fan, for example. The practical implementation of any scatterplot smoother is greatly enhanced by the availability of a reliable rule for automatic selection of the smoothing parameter. In this article we apply the ideas of plug-in bandwidth selection to develop strategies for choosing the smoothing parameter of local linear squares kernel estimators. Our results are applicable to odd-degree local polynomial fits and can be extended to other settings, such as derivative estimation and multiple nonparametric regression. An implementation in the important case of local linear fits with univariate predictors is shown to perform well in practice. A by-product of our work is the development of a class of nonparametric variance estimators, based on local least squares ideas, and plug-in rules for their implementation.
The Journal of the American Statistical Association (JASA) has long been considered the premier journal of statistical science. Science Citation Index reported JASA was the most highly cited journal in the mathematical sciences in 1991-2001, with 16,457 citations, more than 50% more than the next most highly cited journals. Articles in JASA focus on statistical applications, theory, and methods in economic, social, physical, engineering, and health sciences and on new methods of statistical education.
Building on two centuries' experience, Taylor & Francis has grown rapidlyover the last two decades to become a leading international academic publisher.The Group publishes over 800 journals and over 1,800 new books each year, coveringa wide variety of subject areas and incorporating the journal imprints of Routledge,Carfax, Spon Press, Psychology Press, Martin Dunitz, and Taylor & Francis.Taylor & Francis is fully committed to the publication and dissemination of scholarly information of the highest quality, and today this remains the primary goal.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Journal of the American Statistical Association
© 1995 American Statistical Association
Request Permissions