We introduce and justify a convenient notation for certain matrix-variate distributions which, by its emphasis on the important underlying parameters, and the theory on which it is based, eases greatly the task of manipulating such distributions. Important examples include the matrix-variate normal, t, F and beta, and the Wishart and inverse Wishart distributions. The theory is applied to compound matrix distributions and to Bayesian prediction in the multivariate linear model.
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are published.
Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. OUP is the world's largest university press with the widest global presence. It currently publishes more than 6,000 new publications a year, has offices in around fifty countries, and employs more than 5,500 people worldwide. It has become familiar to millions through a diverse publishing program that includes scholarly works in all academic disciplines, bibles, music, school and college textbooks, business books, dictionaries and reference books, and academic journals.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Biometrika
© 1981 Biometrika Trust
Request Permissions