Fisher's theory of maximum likelihood estimation routinely provides approximate confidence intervals for a parameter of interest θ, the standard intervals θ̂ ± zα σ̂, where θ̂ is the maximum likelihood estimator, σ̂ is an estimate of standard error based on differentiation of the log likelihood function, and zα is normal percentile point. Recent work has produced systems of better approximate confidence intervals, which look more like exact intervals when exact intervals exist, and in general have coverage probabilities an order of magnitude more accurate than the standard intervals. This paper develops an efficient and dependable algorithm for calculating highly accurate approximate intervals on a routine basis, for parameters θ defined in the framework of a multiparameter exponential family. The better intervals require only a few times as much computational effort as the standard intervals. A variety of numerical and theoretical arguments are used to show that the algorithm works well, and that the improvement over the standard intervals can be striking in realistic situations.
Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are published.
Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. OUP is the world's largest university press with the widest global presence. It currently publishes more than 6,000 new publications a year, has offices in around fifty countries, and employs more than 5,500 people worldwide. It has become familiar to millions through a diverse publishing program that includes scholarly works in all academic disciplines, bibles, music, school and college textbooks, business books, dictionaries and reference books, and academic journals.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Biometrika
© 1992 Biometrika Trust
Request Permissions