In this paper we derive general formulae for first-order biases of maximum likelihood estimates of the linear parameters, linear predictors, the dispersion parameter and fitted values in generalized linear models. These formulae may be implemented in the GLIM program to compute bias-corrected maximum likelihood estimates to order n-1, where n is the sample size, with minimal effort by means of a supplementary weighted regression. For linear logistic models it is shown that the asymptotic bias vector of β̂ is almost collinear with β. The approximate formula β p/m+ for the bias of betâ in logistic models, where p = dim(β) and m+ = Σ mi is the sum of the binomial indices, is derived and checked numerically.
Series B (Statistical Methodology) of the Journal of the Royal Statistical Society started out simply as the Supplement to the Journal of the Royal Statistical Society in the Society's centenary year of 1934. The journal now publishes high quality papers on the methodological aspects of statistics. The objective of papers is to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods. JSTOR provides a digital archive of the print version of Journal of the Royal Statistical Society, Series B: Statistical Methodology. The electronic version of Journal of the Royal Statistical Society, Series B: Statistical Methodology is available at http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code;=rssb. Authorized users may be able to access the full text articles at this site.
Wiley is a global provider of content and content-enabled workflow solutions in areas of scientific, technical, medical, and scholarly research; professional development; and education. Our core businesses produce scientific, technical, medical, and scholarly journals, reference works, books, database services, and advertising; professional books, subscription products, certification and training services and online applications; and education content and services including integrated online teaching and learning resources for undergraduate and graduate students and lifelong learners. Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley has published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace. Wiley has partnerships with many of the world’s leading societies and publishes over 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols in STMS subjects. With a growing open access offering, Wiley is committed to the widest possible dissemination of and access to the content we publish and supports all sustainable models of access. Our online platform, Wiley Online Library (wileyonlinelibrary.com) is one of the world’s most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Journal of the Royal Statistical Society. Series B (Methodological)
© 1991 Royal Statistical Society
Request Permissions