We consider hierarchical generalized linear models which allow extra error components in the linear predictors of generalized linear models. The distribution of these components is not restricted to be normal; this allows a broader class of models, which includes generalized linear mixed models. We use a generalization of Henderson's joint likelihood, called a hierarchical or h-likelihood, for inferences from hierarchical generalized linear models. This avoids the integration that is necessary when marginal likelihood is used. Under appropriate conditions maximizing the h-likelihood gives fixed effect estimators that are asymptotically equivalent to those obtained from the use of marginal likelihood; at the same time we obtain the random effect estimates that are asymptotically best unbiased predictors. An adjusted profile h-likelihood is shown to give the required generalization of restricted maximum likelihood for the estimation of dispersion components. A scaled deviance test for the goodness of fit, a model selection criterion for choosing between various dispersion models and a graphical method for checking the distributional assumption of random effects are proposed. The ideas of quasi-likelihood and extended quasi-likelihood are generalized to the new class. We give examples of the Poisson-gamma, binomial-beta and gamma-inverse gamma hierarchical generalized linear models. A resolution is proposed for the apparent difference between population-averaged and subject-specific models. A unified framework is provided for viewing and extending many existing methods.
Series B (Statistical Methodology) of the Journal of the Royal Statistical Society started out simply as the Supplement to the Journal of the Royal Statistical Society in the Society's centenary year of 1934. The journal now publishes high quality papers on the methodological aspects of statistics. The objective of papers is to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods. JSTOR provides a digital archive of the print version of Journal of the Royal Statistical Society, Series B: Statistical Methodology. The electronic version of Journal of the Royal Statistical Society, Series B: Statistical Methodology is available at http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code;=rssb. Authorized users may be able to access the full text articles at this site.
Wiley is a global provider of content and content-enabled workflow solutions in areas of scientific, technical, medical, and scholarly research; professional development; and education. Our core businesses produce scientific, technical, medical, and scholarly journals, reference works, books, database services, and advertising; professional books, subscription products, certification and training services and online applications; and education content and services including integrated online teaching and learning resources for undergraduate and graduate students and lifelong learners. Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley has published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace. Wiley has partnerships with many of the world’s leading societies and publishes over 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols in STMS subjects. With a growing open access offering, Wiley is committed to the widest possible dissemination of and access to the content we publish and supports all sustainable models of access. Our online platform, Wiley Online Library (wileyonlinelibrary.com) is one of the world’s most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Journal of the Royal Statistical Society. Series B (Methodological)
© 1996 Royal Statistical Society
Request Permissions