We propose a new method for estimation in linear models. The `lasso' minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients being less than a constant. Because of the nature of this constraint it tends to produce some coefficients that are exactly 0 and hence gives interpretable models. Our simulation studies suggest that the lasso enjoys some of the favourable properties of both subset selection and ridge regression. It produces interpretable models like subset selection and exhibits the stability of ridge regression. There is also an interesting relationship with recent work in adaptive function estimation by Donoho and Johnstone. The lasso idea is quite general and can be applied in a variety of statistical models: extensions to generalized regression models and tree-based models are briefly described.
Series B (Statistical Methodology) of the Journal of the Royal Statistical Society started out simply as the Supplement to the Journal of the Royal Statistical Society in the Society's centenary year of 1934. The journal now publishes high quality papers on the methodological aspects of statistics. The objective of papers is to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods. JSTOR provides a digital archive of the print version of Journal of the Royal Statistical Society, Series B: Statistical Methodology. The electronic version of Journal of the Royal Statistical Society, Series B: Statistical Methodology is available at http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code;=rssb. Authorized users may be able to access the full text articles at this site.
Wiley is a global provider of content and content-enabled workflow solutions in areas of scientific, technical, medical, and scholarly research; professional development; and education. Our core businesses produce scientific, technical, medical, and scholarly journals, reference works, books, database services, and advertising; professional books, subscription products, certification and training services and online applications; and education content and services including integrated online teaching and learning resources for undergraduate and graduate students and lifelong learners. Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley has published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace. Wiley has partnerships with many of the world’s leading societies and publishes over 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols in STMS subjects. With a growing open access offering, Wiley is committed to the widest possible dissemination of and access to the content we publish and supports all sustainable models of access. Our online platform, Wiley Online Library (wileyonlinelibrary.com) is one of the world’s most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Journal of the Royal Statistical Society. Series B (Methodological)
© 1996 Royal Statistical Society
Request Permissions