The ordinal logistic regression model that McCullagh calls the proportional odds model is extended to models that allow non-proportional odds for a subset of the explanatory variables. The maximum likelihood method is used for estimation of parameters of general and restricted partial proportional odds models as well as for the derivation of Wald, Rao score and likelihood ratio tests. These tests assess association without assuming proportional odds and test proportional odds against various alternatives. Simulation results compare the score test for proportional odds with tests suggested by Koch, Amara and Singer that are based on a series of binary logistic models.
Applied Statistics of the Journal of the Royal Statistical Society was founded in 1952. It promotes papers that are driven by real life problems and that make a novel contribution to the subject. JSTOR provides a digital archive of the print version of Applied Statistics. The electronic version of Applied Statistics is available at http://www.interscience.wiley.com. Authorized users may be able to access the full text articles at this site.
Wiley is a global provider of content and content-enabled workflow solutions in areas of scientific, technical, medical, and scholarly research; professional development; and education. Our core businesses produce scientific, technical, medical, and scholarly journals, reference works, books, database services, and advertising; professional books, subscription products, certification and training services and online applications; and education content and services including integrated online teaching and learning resources for undergraduate and graduate students and lifelong learners. Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley has published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace. Wiley has partnerships with many of the world’s leading societies and publishes over 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols in STMS subjects. With a growing open access offering, Wiley is committed to the widest possible dissemination of and access to the content we publish and supports all sustainable models of access. Our online platform, Wiley Online Library (wileyonlinelibrary.com) is one of the world’s most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Journal of the Royal Statistical Society. Series C (Applied Statistics)
© 1990 Royal Statistical Society
Request Permissions