If you need an accessible version of this item please contact JSTOR User Support

An Analysis of Rock Magnetic Data

P. M. S. Blackett, J. A. Clegg and P. H. S. Stubbs
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 256, No. 1286 (Jul. 5, 1960), pp. 291-322
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/2413827
Page Count: 32
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
An Analysis of Rock Magnetic Data
Preview not available

Abstract

The data obtained from numerous palaeomagnetic measurements made during the past decade have shown that while the geologically younger rock formations are magnetized in directions close to that of the present earth's magnetic field, the remanent magnetic polarizations of older rocks depart markedly from this pattern. These observations are widely held by many workers to suggest that the main continental land masses have undergone movements relative to one another during the past. The present paper gives an account of a new analysis of the available data, making a minimum number of theoretical assumptions about the ways in which the rocks became magnetized and about the origin of the geomagnetic field. The results of this analysis strongly support the supposition that the observed wide divergence between the directions of the remanent magnetic vectors of older rocks and that of the present earth's field is systematic, and not a result of purely random processes occurring throughout geological time. The most reasonable explanations of the phenomenon appear to be that (a) the directions of magnetization of the earlier rocks have been changed by some widespread physical or geological processes since the time of their formation, (b) the earth's magnetic field has had strong multipolar components in past geological ages, (c) a relative drift of the continents across the earth's mantle has occurred. Of these hypotheses, (c) appears to be the most plausible. On the tentative assumption that the rock magnetic results can be explained by continental drift, it is possible to estimate the ancient latitude and the orientation relative to the earth's rotational axis, of each continent, although by palaeomagnetic measurements alone changes in relative longitude cannot be revealed.

Page Thumbnails

  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310
  • Thumbnail: Page 
311
    311
  • Thumbnail: Page 
312
    312
  • Thumbnail: Page 
313
    313
  • Thumbnail: Page 
314
    314
  • Thumbnail: Page 
315
    315
  • Thumbnail: Page 
316
    316
  • Thumbnail: Page 
317
    317
  • Thumbnail: Page 
318
    318
  • Thumbnail: Page 
319
    319
  • Thumbnail: Page 
320
    320
  • Thumbnail: Page 
321
    321
  • Thumbnail: Page 
322
    322