If you need an accessible version of this item please contact JSTOR User Support

Autopolyploidy in Angiosperms: Have We Grossly Underestimated the Number of Species?

Douglas E. Soltis, Pamela S. Soltis, Douglas W. Schemske, James F. Hancock, John N. Thompson, Brian C. Husband and Walter S. Judd
Taxon
Vol. 56, No. 1 (Feb., 2007), pp. 13-30
DOI: 10.2307/25065732
Stable URL: http://www.jstor.org/stable/25065732
Page Count: 18
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Autopolyploidy in Angiosperms: Have We Grossly Underestimated the Number of Species?
Preview not available

Abstract

Many species comprise multiple cytotypes that represent autopolyploids, or presumed autopolyploids, of the basic diploid cytotype. However, rarely has an autopolyploid been formally named and considered to represent a species distinct from its diploid progenitor (Zea diploperennis and Z. perennis represent a rare example). The major reasons why autopolyploids have not been named as distinct species are: (1) tradition of including multiple cytotypes in a single named species; and (2) tradition and convenience of adhering to a broad morphology-based taxonomic (or phenetic) species concept. As a result, plant biologists have underrepresented the distinct biological entities that actually exist in nature. Although it may seem "practical" to include morphologically highly similar cytotypes in one species, this practice obscures insights into evolution and speciation and hinders conservation. However, we do not suggest that all cytotypes should be named; each case must be carefully considered. A number of species comprising multiple cytotypes have been thoroughly investigated. Drawing on the literature, as well as our own experience with several autopolyploids (Tolmiea menziesii, Galax urceolata, Chamerion angustifolium, Heuchera grossulariifolia, Vaccinium corymbosum), we reassess the traditional view of plant autopolyploids as mere cytotypes. When considered carefully, many "unnamed" autopolyploids fulfill the requirements of multiple species concepts, including the biological, taxonomic, diagnosability, apomorphic, and evolutionary species concepts. Compared to the diploid parent, the autopolyploids noted above possess distinct geographic ranges, can be distinguished morphologically, and are largely reproductively isolated (via a diversity of mechanisms including reproductive and ecological isolation). These five autopolyploids (and probably many others) represent distinct evolutionary lineages; we therefore suggest that they be considered distinct species and also provide a system for naming them.

Page Thumbnails

  • Thumbnail: Page 
13
    13
  • Thumbnail: Page 
14
    14
  • Thumbnail: Page 
15
    15
  • Thumbnail: Page 
16
    16
  • Thumbnail: Page 
17
    17
  • Thumbnail: Page 
18
    18
  • Thumbnail: Page 
19
    19
  • Thumbnail: Page 
20
    20
  • Thumbnail: Page 
21
    21
  • Thumbnail: Page 
22
    22
  • Thumbnail: Page 
23
    23
  • Thumbnail: Page 
24
    24
  • Thumbnail: Page 
25
    25
  • Thumbnail: Page 
26
    26
  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30