Models for the analysis of longitudinal data must recognize the relationship between serial observations on the same unit. Multivariate models with general covariance structure are often difficult to apply to highly unbalanced data, whereas two-stage random-effects models can be used easily. In two-stage models, the probability distributions for the response vectors of different individuals belong to a single family, but some random-effects parameters vary across individuals, with a distribution specified at the second stage. A general family of models is discussed, which includes both growth models and repeated-measures models as special cases. A unified approach to fitting these models, based on a combination of empirical Bayes and maximum likelihood estimation of model parameters and using the EM algorithm, is discussed. Two examples are taken from a current epidemiological study of the health effects of air pollution.
Biometrics is a scientific journal emphasizing the role of statistics and mathematics in the biological sciences. Its object is to promote and extend the use of mathematical and statistical methods in pure and applied biological sciences by describing developments in these methods and their applications in a form readily assimilable by experimental scientists. JSTOR provides a digital archive of the print version of Biometrics. The electronic version of Biometrics is available at http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code;=biom. Authorized users may be able to access the full text articles at this site.
The International Biometric Society is an international society for the advancement of biological science through the development of quantitative theories and the application, development and dissemination of effective mathematical and statistical techniques. The Society welcomes as members biologists, mathematicians, statisticians, and others interested in applying similar techniques.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Biometrics
© 1982 International Biometric Society
Request Permissions