Methods of evaluating and comparing the performance of diagnostic tests are of increasing importance as new tests are developed and marketed. When a test is based on an observed variable that lies on a continuous or graded scale, an assessment of the overall value of the test can be made through the use of a receiver operating characteristic (ROC) curve. The curve is constructed by varying the cutpoint used to determine which values of the observed variable will be considered abnormal and then plotting the resulting sensitivities against the corresponding false positive rates. When two or more empirical curves are constructed based on tests performed on the same individuals, statistical analysis on differences between curves must take into account the correlated nature of the data. This paper presents a nonparametric approach to the analysis of areas under correlated ROC curves, by using the theory on generalized U-statistics to generate an estimated covariance matrix.
Biometrics is a scientific journal emphasizing the role of statistics and mathematics in the biological sciences. Its object is to promote and extend the use of mathematical and statistical methods in pure and applied biological sciences by describing developments in these methods and their applications in a form readily assimilable by experimental scientists. JSTOR provides a digital archive of the print version of Biometrics. The electronic version of Biometrics is available at http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code;=biom. Authorized users may be able to access the full text articles at this site.
The International Biometric Society is an international society for the advancement of biological science through the development of quantitative theories and the application, development and dissemination of effective mathematical and statistical techniques. The Society welcomes as members biologists, mathematicians, statisticians, and others interested in applying similar techniques.
This item is part of a JSTOR Collection.
For terms and use, please refer to our
Biometrics
© 1988 International Biometric Society