The proportional odds model for ordinal logistic regression provides a useful extension of the binary logistic model to situations where the response variable takes on values in a set of ordered categories. The model may be represented by a series of logistic regressions for dependent binary variables, with common regression parameters reflecting the proportional odds assumption. Key to the valid application of the model is the assessment of the proportionality assumption. An approach is described arising from comparisons of the separate (correlated) fits to the binary logistic models underlying the overall model. Based on asymptotic distributional results, formal goodness-of-fit measures are constructed to supplement informal comparisons of the different fits. A number of proposals, including application of bootstrap simulation, are discussed and illustrated with a data example.
Biometrics is a scientific journal emphasizing the role of statistics and mathematics in the biological sciences. Its object is to promote and extend the use of mathematical and statistical methods in pure and applied biological sciences by describing developments in these methods and their applications in a form readily assimilable by experimental scientists. JSTOR provides a digital archive of the print version of Biometrics. The electronic version of Biometrics is available at http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code;=biom. Authorized users may be able to access the full text articles at this site.
The International Biometric Society is an international society for the advancement of biological science through the development of quantitative theories and the application, development and dissemination of effective mathematical and statistical techniques. The Society welcomes as members biologists, mathematicians, statisticians, and others interested in applying similar techniques.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Biometrics
© 1990 International Biometric Society
Request Permissions