Many statistical methods involve summarizing a probability distribution by a region of the sample space covering a specified probability. One method of selecting such a region is to require it to contain points of relatively high density. Highest density regions are particularly useful for displaying multimodal distributions and, in such cases, may consist of several disjoint subsets-one for each local mode. In this paper, I propose a simple method for computing a highest density region from any given (possibly multivariate) density f(x) that is bounded and continuous in x. Several examples of the use of highest density regions in statistical graphics are also given. A new form of boxplot is proposed based on highest density regions; versions in one and two dimensions are given. Highest density regions in higher dimensions are also discussed and plotted.
The American Statistician strives to publish articles of general interest to the statistical profession on topics that are important for a broad group of statisticians, and ordinarily not highly technical. The journal is organized into sections: Statistical Practice, General, Teacher's Corner, Statistical Computing and Graphics, Reviews of Books and Teaching Materials, and Letters.
Building on two centuries' experience, Taylor & Francis has grown rapidlyover the last two decades to become a leading international academic publisher.The Group publishes over 800 journals and over 1,800 new books each year, coveringa wide variety of subject areas and incorporating the journal imprints of Routledge,Carfax, Spon Press, Psychology Press, Martin Dunitz, and Taylor & Francis.Taylor & Francis is fully committed to the publication and dissemination of scholarly information of the highest quality, and today this remains the primary goal.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
The American Statistician
© 1996 American Statistical Association
Request Permissions