Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Contact Interactions on a Lattice

T. E. Harris
The Annals of Probability
Vol. 2, No. 6 (Dec., 1974), pp. 969-988
Stable URL: http://www.jstor.org/stable/2959099
Page Count: 20
  • Read Online (Free)
  • Download ($19.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Contact Interactions on a Lattice
Preview not available

Abstract

Let $\{\xi_t\}$ be a Markov process whose values are subsets of $Z_d$, the $d$-dimensional integers. Put $\xi_t(x) = 1$ if $x \in \xi_t$ and 0 otherwise. The transition intensity for a change in $\xi_t(x)$ depends on $\{\xi_t(y), y$ a neighbor of $x\}$. The chief concern is with "contact processes," where $\xi_t(x)$ can change from 0 to 1 only if $\xi_t(y) = 1$ for some $y$ neighboring $x$. Let $p_t(\xi) = \operatorname{Prob} \{\xi_t \neq \varnothing \mid \xi_0 = \xi\}$. Under appropriate conditions, $p_t$ is increasing, subadditive, or submodular in $\xi$. In the case of contact processes, conditions are giving implying that $p_\infty(\xi) = 0$ for all finite $\xi$, or that the contrary is true. In other cases conditions for ergodicity are given.

Page Thumbnails

  • Thumbnail: Page 
969
    969
  • Thumbnail: Page 
970
    970
  • Thumbnail: Page 
971
    971
  • Thumbnail: Page 
972
    972
  • Thumbnail: Page 
973
    973
  • Thumbnail: Page 
974
    974
  • Thumbnail: Page 
975
    975
  • Thumbnail: Page 
976
    976
  • Thumbnail: Page 
977
    977
  • Thumbnail: Page 
978
    978
  • Thumbnail: Page 
979
    979
  • Thumbnail: Page 
980
    980
  • Thumbnail: Page 
981
    981
  • Thumbnail: Page 
982
    982
  • Thumbnail: Page 
983
    983
  • Thumbnail: Page 
984
    984
  • Thumbnail: Page 
985
    985
  • Thumbnail: Page 
986
    986
  • Thumbnail: Page 
987
    987
  • Thumbnail: Page 
988
    988