Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

A Framework for the Quantitative Study of Evolutionary Trees

Michael D. Hendy and David Penny
Systematic Zoology
Vol. 38, No. 4 (Dec., 1989), pp. 297-309
DOI: 10.2307/2992396
Stable URL: http://www.jstor.org/stable/2992396
Page Count: 13
  • Get Access
  • Download ($42.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
A Framework for the Quantitative Study of Evolutionary Trees
Preview not available

Abstract

A direct method for calculating expected data from an evolutionary model for two state characters is described. The method uses four vectors p, q, r and s. p and q are the probabilities of a character change on the 2n - 3 edges of a tree T (n is the number of taxa). r and s are properties of the data, are independent of any tree and have 2n-1 entries. For a given tree T, and with specified probabilities (p or q), we determine r, then s, the expected probabilities of each of the 2n-1 possible partitions of taxa. For any tree T the relationship can be inverted. This allows the probabilities of change on the tree, p and q, to be estimated directly from observed data (r or s). These relationships have been used to analyse the behaviour of tree building algorithms under conditions when there are sufficient data. (This is when the tree does not change as more data are collected, i.e., convergence to a single tree.) With equal rates of evolution (i.e., with a molecular clock), we show that for n = 4 taxa, parsimony will always converge to the correct tree, but we give examples with n = 5 where parsimony will converge on an incorrect tree, even for equal rates of evolution. A further example with n = 6 shows convergence to an incorrect tree with equal but arbitrarily small rates of change. We interpret a basic difficulty with parsimony as 'long edges attract.' If there are additional taxa that intersect long edges on the tree, then this effect can be reduced. Some distance methods may also converge to an incorrect tree.

Page Thumbnails

  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309