Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Quantum Physics in Neuroscience and Psychology: A Neurophysical Model of Mind-Brain Interaction

Jeffrey M. Schwartz, Henry P. Stapp and Mario Beauregard
Philosophical Transactions: Biological Sciences
Vol. 360, No. 1458 (Jun. 29, 2005), pp. 1309-1327
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/30041344
Page Count: 19
  • Read Online (Free)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Quantum Physics in Neuroscience and Psychology: A Neurophysical Model of Mind-Brain Interaction
Preview not available

Abstract

Neuropsychological research on the neural basis of behaviour generally posits that brain mechanisms will ultimately suffice to explain all psychologically described phenomena. This assumption stems from the idea that the brain is made up entirely of material particles and fields, and that all causal mechanisms relevant to neuroscience can therefore be formulated solely in terms of properties of these elements. Thus, terms having intrinsic mentalistic and/or experiential content (e.g. 'feeling', 'knowing' and 'effort') are not included as primary causal factors. This theoretical restriction is motivated primarily by ideas about the natural world that have been known to be fundamentally incorrect for more than three-quarters of a century. Contemporary basic physical theory differs profoundly from classic physics on the important matter of how the consciousness of human agents enters into the structure of empirical phenomena. The new principles contradict the older idea that local mechanical processes alone can account for the structure of all observed empirical data. Contemporary physical theory brings directly and irreducibly into the overall causal structure certain psychologically described choices made by human agents about how they will act. This key development in basic physical theory is applicable to neuroscience, and it provides neuroscientists and psychologists with an alternative conceptual framework for describing neural processes. Indeed, owing to certain structural features of ion channels critical to synaptic function, contemporary physical theory must in principle be used when analysing human brain dynamics. The new framework, unlike its classic-physics-based predecessor, is erected directly upon, and is compatible with, the prevailing principles of physics. It is able to represent more adequately than classic concepts the neuroplastic mechanisms relevant to the growing number of empirical studies of the capacity of directed attention and mental effort to systematically alter brain function.

Page Thumbnails

  • Thumbnail: Page 
1309
    1309
  • Thumbnail: Page 
1310
    1310
  • Thumbnail: Page 
1311
    1311
  • Thumbnail: Page 
1312
    1312
  • Thumbnail: Page 
1313
    1313
  • Thumbnail: Page 
1314
    1314
  • Thumbnail: Page 
1315
    1315
  • Thumbnail: Page 
1316
    1316
  • Thumbnail: Page 
1317
    1317
  • Thumbnail: Page 
1318
    1318
  • Thumbnail: Page 
1319
    1319
  • Thumbnail: Page 
1320
    1320
  • Thumbnail: Page 
1321
    1321
  • Thumbnail: Page 
1322
    1322
  • Thumbnail: Page 
1323
    1323
  • Thumbnail: Page 
1324
    1324
  • Thumbnail: Page 
1325
    1325
  • Thumbnail: Page 
1326
    1326
  • Thumbnail: Page 
1327
    1327