Standard methods for the regression analysis of clustered data postulate models relating covariates to the response without regard to between- and within-cluster covariate effects. Implicit in these analyses is the assumption that these effects are identical. Example data show that this is frequently not the case and that analyses that ignore differential between- and within-cluster covariate effects can be misleading. Consideration of between- and within-cluster effects also helps to explain observed and theoretical differences between mixture model analyses and those based on conditional likelihood methods. In particular, we show that conditional likelihood methods estimate purely within-cluster covariate effects, whereas mixture model approaches estimate a weighted average of between- and within-cluster covariate effects.
Biometrics is a scientific journal emphasizing the role of statistics and mathematics in the biological sciences. Its object is to promote and extend the use of mathematical and statistical methods in pure and applied biological sciences by describing developments in these methods and their applications in a form readily assimilable by experimental scientists. JSTOR provides a digital archive of the print version of Biometrics. The electronic version of Biometrics is available at http://www.blackwell-synergy.com/servlet/useragent?func=showIssues&code;=biom. Authorized users may be able to access the full text articles at this site.
The International Biometric Society is an international society for the advancement of biological science through the development of quantitative theories and the application, development and dissemination of effective mathematical and statistical techniques. The Society welcomes as members biologists, mathematicians, statisticians, and others interested in applying similar techniques.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Biometrics
© 1998 International Biometric Society
Request Permissions