Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

A Novel Human Stress Response-Related Gene with a Potential Role in Induced Radioresistance

T. Robson, M. C. Joiner, G. D. Wilson, W. McCullough, M. E. Price, I. Logan, H. Jones, S. R. McKeown and D. G. Hirst
Radiation Research
Vol. 152, No. 5 (Nov., 1999), pp. 451-461
DOI: 10.2307/3580140
Stable URL: http://www.jstor.org/stable/3580140
Page Count: 11
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Novel Human Stress Response-Related Gene with a Potential Role in Induced Radioresistance
Preview not available

Abstract

We have isolated a novel gene, DIR1, from L132 cells that is transiently repressed after exposure to low radiation doses and has a potential role in induced radioresistance. Molecular and cellular characterization of this gene reveals that it is unique but has similarities to a family of heat-shock-related proteins known as immunophilins. These have been implicated in various cellular functions including general stress responses and control of the cell cycle. Antisense strategies have demonstrated that the DIR1 gene also appears to have some involvement in the control of the cell cycle. Furthermore, there appears be a potential role for this gene product in the phenomenon of induced radioresistance through a mechanism that increases the rate of DNA repair in cells exposed to X rays and subsequently increases the cells' resistance to radiation. This is the first description of an immunophilin-like gene that has a possible role in adaptive/inducible responses to X rays in mammalian cells.

Page Thumbnails

  • Thumbnail: Page 
451
    451
  • Thumbnail: Page 
452
    452
  • Thumbnail: Page 
453
    453
  • Thumbnail: Page 
454
    454
  • Thumbnail: Page 
455
    455
  • Thumbnail: Page 
456
    456
  • Thumbnail: Page 
457
    457
  • Thumbnail: Page 
458
    458
  • Thumbnail: Page 
459
    459
  • Thumbnail: Page 
460
    460
  • Thumbnail: Page 
461
    461