Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Physiological and Morphological Responses to Simultaneous Cold Exposure and Parasite Infection by Wild-Derived House Mice

Deborah M. Kristan and Kimberly A. Hammond
Functional Ecology
Vol. 17, No. 4 (Aug., 2003), pp. 464-471
Stable URL: http://www.jstor.org/stable/3598983
Page Count: 8
  • Read Online (Free)
  • Download ($18.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Physiological and Morphological Responses to Simultaneous Cold Exposure and Parasite Infection by Wild-Derived House Mice
Preview not available

Abstract

1. Many animals respond to environmental demands with phenotypic plasticity of morphology and physiology. We examined the effects of ambient temperature and parasitism on morphology and physiology of wild-derived house mice (Mus musculus) that were exposed to cold and/or experimentally infected with a naturally occurring intestinal nematode (Heligmosomoides polygyrus). 2. Parasitized mice had changes in some organ masses, decreased ability to digest food, and lower rates of glucose transport but similar total glucose transport capacity as unparasitized mice. Wild-derived house mice did not use fat stores to respond to parasitism but did increase mucosal mass in the small intestine enough to maintain glucose acquisition at a similar level to unparasitized mice. 3. Cold-exposed mice showed increased masses of some organs, lower rates of glucose transport but similar total capacity to transport glucose as warm acclimated mice. 4. The effects of cold exposure and parasite infection were largely independent of each other for the morphological and physiological parameters we measured. 5. The more recent exposure of wild-derived house mice to fluctuating temperatures and to parasite infection may help to explain the subtle differences that we observed in how wild-derived mice respond to environmental demands compared to their laboratory mouse counterparts.

Page Thumbnails

  • Thumbnail: Page 
464
    464
  • Thumbnail: Page 
465
    465
  • Thumbnail: Page 
466
    466
  • Thumbnail: Page 
[467]
    [467]
  • Thumbnail: Page 
[468]
    [468]
  • Thumbnail: Page 
[469]
    [469]
  • Thumbnail: Page 
470
    470
  • Thumbnail: Page 
471
    471