Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

On the Function of Flowers

G. Bell
Proceedings of the Royal Society of London. Series B, Biological Sciences
Vol. 224, No. 1235 (Apr. 22, 1985), pp. 223-265
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/36033
Page Count: 48
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
On the Function of Flowers
Preview not available

Abstract

Most flowers are bisexual in function, but counting secondary allocation to attractive structures such as the corolla as equally male and female leads to the paradoxical conclusion that plants bearing perfect flowers invariably allocate much more to female than to male function. A method of calculating the gender of secondary floral allocation is described, and it is speculated that this allocation is predominantly male. Observations and experiments with natural populations of herbs, designed to test this hypothesis gave the following major results. (i) Insects visit larger flowers more frequently (Fragaria), and removal of floral biomass causes a reduction in the frequency of insect visits proportional to the fraction of biomass removed (Impatiens). (ii) Removal of attractive structures may cause a decline in the probability that a fruit will be formed but has no effect on the number of seeds set per fruit; thus, mutilation of essentially solitary flowers has no effect on seed-set per fruit (Impatiens), while removal of flowers from inflorescences in a species that forms several many-seeded fruits per inflorescence reduces fruit-set per inflorescence but has no effect on seed-set per fruit (Asclepias), and removal of sterile flowers from an inflorescence in which the fertile flowers yield one-seeded fruits is effective in reducing seed-set per inflorescence (Viburnum). (iii) Larger flowers may disperse a greater fraction of their pollen in unit time (Impatiens) and the removal of flowers from inflorescences causes a steep reduction in total pollen exported and a weak decline in the quantity of pollen exported per flower (Asclepias). These results are consistent with the hypothesis that a single insect visit (or a very few visits) suffices to fertilize almost all available ovules and is procured by a very small allocation to attractive structures, while much greater allocation is necessary to procure the numerous visits required to disperse a large fraction of the pollen. This inference is supported by a comparative survey of sexually dimorphic plants, in which male flowers are generally larger than female flowers, male inflorescences bear more flowers, and male plants bear more inflorescences. It is concluded that the flower is primarily a male organ, in the sense that the bulk of allocation to secondary floral structures is designed to procure the export of pollen rather than the fertilization of ovules. This conclusion may be sensitive to whether it is the flower or the inflorescence as a whole that represents the primary unit of attraction to insects. It was found that the performance of a given flower was substantially affected by other flowers in the same compact inflorescence (Asclepias), though not by other inflorescences on the same plant nor by those borne by nearby plants (Fragaria, Impatiens). A general quantitative theory of flower and inflorescence design is outlined, and used to organize the extensive experimental results for Asclepias.

Page Thumbnails

  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224
  • Thumbnail: Page 
225
    225
  • Thumbnail: Page 
226
    226
  • Thumbnail: Page 
227
    227
  • Thumbnail: Page 
228
    228
  • Thumbnail: Page 
229
    229
  • Thumbnail: Page 
230
    230
  • Thumbnail: Page 
231
    231
  • Thumbnail: Page 
232
    232
  • Thumbnail: Page 
233
    233
  • Thumbnail: Page 
234
    234
  • Thumbnail: Page 
235
    235
  • Thumbnail: Page 
236
    236
  • Thumbnail: Page 
237
    237
  • Thumbnail: Page 
238
    238
  • Thumbnail: Page 
239
    239
  • Thumbnail: Page 
240
    240
  • Thumbnail: Page 
241
    241
  • Thumbnail: Page 
242
    242
  • Thumbnail: Page 
243
    243
  • Thumbnail: Page 
244
    244
  • Thumbnail: Page 
245
    245
  • Thumbnail: Page 
246
    246
  • Thumbnail: Page 
247
    247
  • Thumbnail: Page 
248
    248
  • Thumbnail: Page 
249
    249
  • Thumbnail: Page 
250
    250
  • Thumbnail: Page 
251
    251
  • Thumbnail: Page 
252
    252
  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
[266]
    [266]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]