We propose the elastic net, a new regularization and variable selection method. Real world data and a simulation study show that the elastic net often outperforms the lasso, while enjoying a similar sparsity of representation. In addition, the elastic net encourages a grouping effect, where strongly correlated predictors tend to be in or out of the model together. The elastic net is particularly useful when the number of predictors (p) is much bigger than the number of observations (n). By contrast, the lasso is not a very satisfactory variable selection method in the p ≫ n case. An algorithm called LARS-EN is proposed for computing elastic net regularization paths efficiently, much like algorithm LARS does for the lasso.
Series B (Statistical Methodology) of the Journal of the Royal Statistical Society started out simply as the Supplement to the Journal of the Royal Statistical Society in the Society's centenary year of 1934. The journal now publishes high quality papers on the methodological aspects of statistics. The objective of papers is to contribute to the understanding of statistical methodology and/or to develop and improve statistical methods. JSTOR provides a digital archive of the print version of Journal of the Royal Statistical Society, Series B: Statistical Methodology. The electronic version of Journal of the Royal Statistical Society, Series B: Statistical Methodology is available at http://www.interscience.wiley.com. Authorized users may be able to access the full text articles at this site.
Wiley is a global provider of content and content-enabled workflow solutions in areas of scientific, technical, medical, and scholarly research; professional development; and education. Our core businesses produce scientific, technical, medical, and scholarly journals, reference works, books, database services, and advertising; professional books, subscription products, certification and training services and online applications; and education content and services including integrated online teaching and learning resources for undergraduate and graduate students and lifelong learners. Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley has published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace. Wiley has partnerships with many of the world’s leading societies and publishes over 1,500 peer-reviewed journals and 1,500+ new books annually in print and online, as well as databases, major reference works and laboratory protocols in STMS subjects. With a growing open access offering, Wiley is committed to the widest possible dissemination of and access to the content we publish and supports all sustainable models of access. Our online platform, Wiley Online Library (wileyonlinelibrary.com) is one of the world’s most extensive multidisciplinary collections of online resources, covering life, health, social and physical sciences, and humanities.
This item is part of JSTOR collection
For terms and use, please refer to our Terms and Conditions
Journal of the Royal Statistical Society. Series B (Statistical Methodology)
© 2005 Royal Statistical Society
Request Permissions