Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Relationships among Seed Plants Inferred from Highly Conserved Genes: Sorting Conflicting Phylogenetic Signals among Ancient Lineages

Susana Magallón and Michael J. Sanderson
American Journal of Botany
Vol. 89, No. 12 (Dec., 2002), pp. 1991-2006
Stable URL: http://www.jstor.org/stable/4122754
Page Count: 16
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Relationships among Seed Plants Inferred from Highly Conserved Genes: Sorting Conflicting Phylogenetic Signals among Ancient Lineages
Preview not available

Abstract

Phylogenetic studies based on different types and treatment of data provide substantially conflicting hypotheses of relationships among seed plants. We conducted phylogenetic analyses of sequences of two highly conserved chloroplast genes, psaA and psbB, for a comprehensive taxonomic sample of seed plants and land plants. Parsimony analyses of two different codon position partitions resulted in well-supported, but significantly conflicting, phylogenetic trees. First and second codon positions place angiosperms and gymnosperms as sister clades and Gnetales as sister to Pinaceae. Third positions place Gnetales as sister to all other seed plants. Maximum likelihood trees for the two partitions are also in conflict. Relationships among the main seed plant clades according to first and second positions are similar to those found in parsimony analysis for the same data, but the third position maximum likelihood tree is substantially different from the corresponding parsimony tree, although it agrees partially with the first and second position trees in placing Gnetales as the sister group of Pinaceae. Our results document high rate heterogeneity among lineages, which, together with the greater average rate of substitution for third positions, may reduce phylogenetic signal due to long-branch attraction in parsimony reconstructions. Whereas resolution of relationships among major seed plant clades remains pending, this study provides increased support for relationships within major seed plant clades.

Page Thumbnails

  • Thumbnail: Page 
1991
    1991
  • Thumbnail: Page 
1992
    1992
  • Thumbnail: Page 
1993
    1993
  • Thumbnail: Page 
1994
    1994
  • Thumbnail: Page 
1995
    1995
  • Thumbnail: Page 
1996
    1996
  • Thumbnail: Page 
1997
    1997
  • Thumbnail: Page 
1998
    1998
  • Thumbnail: Page 
1999
    1999
  • Thumbnail: Page 
2000
    2000
  • Thumbnail: Page 
2001
    2001
  • Thumbnail: Page 
2002
    2002
  • Thumbnail: Page 
2003
    2003
  • Thumbnail: Page 
2004
    2004
  • Thumbnail: Page 
2005
    2005
  • Thumbnail: Page 
2006
    2006