Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Asymptotic Behaviour of the Variance Function

Bent Jørgensen, José Raúl Martínez and Min Tsao
Scandinavian Journal of Statistics
Vol. 21, No. 3 (Sep., 1994), pp. 223-243
Stable URL: http://www.jstor.org/stable/4616314
Page Count: 21
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Asymptotic Behaviour of the Variance Function
Preview not available

Abstract

We investigate the asymptotic behaviour of the variance function V of a natural exponential family with support S R. If inf S = 0, we show that V(0) = 0 and that the right derivative at zero is $V^{\prime}(0^{+})=\text{inf}\{S\ \{0\}\}$. Using a theorem by Mora (1990) we show that if lim $c^{-p}V(c\mu)=\mu ^{p}$ uniformly on compact subsets in μ for either c → ∞ or c → 0, then p ∉ (0, 1), and the corresponding exponential dispersion model, suitably scaled, converges to a member of the Tweedie family of exponential dispersion models, corresponding to the variance function $V(\mu)=\mu ^{p}$. This gives a kind of central limit theory for exponential dispersion models. In the case p = 2, the limiting family is gamma, and the result essentially follows from Tauber theory. For p = 1, we obtain a version of the Poisson law of small numbers, generalizing a result for discrete models due to Jørgensen (1986). For 1 < p < 2, the limiting family is compound Poisson, and for p > 2 or p ≤ 0 the limiting families are generated by respectively positive stable distributions or extreme stable distributions, in the latter case inf S = - ∞. A number of illustrative examples are considered.

Page Thumbnails

  • Thumbnail: Page 
[223]
    [223]
  • Thumbnail: Page 
224
    224
  • Thumbnail: Page 
225
    225
  • Thumbnail: Page 
226
    226
  • Thumbnail: Page 
227
    227
  • Thumbnail: Page 
228
    228
  • Thumbnail: Page 
229
    229
  • Thumbnail: Page 
230
    230
  • Thumbnail: Page 
231
    231
  • Thumbnail: Page 
232
    232
  • Thumbnail: Page 
233
    233
  • Thumbnail: Page 
234
    234
  • Thumbnail: Page 
235
    235
  • Thumbnail: Page 
236
    236
  • Thumbnail: Page 
237
    237
  • Thumbnail: Page 
238
    238
  • Thumbnail: Page 
239
    239
  • Thumbnail: Page 
240
    240
  • Thumbnail: Page 
241
    241
  • Thumbnail: Page 
242
    242
  • Thumbnail: Page 
243
    243