Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Velocity of Propagation of Electromagnetic Waves Derived from the Resonant Frequencies of a Cylindrical Cavity Resonator

L. Essen
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences
Vol. 204, No. 1077 (Dec. 7, 1950), pp. 260-277
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/98433
Page Count: 19
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Velocity of Propagation of Electromagnetic Waves Derived from the Resonant Frequencies of a Cylindrical Cavity Resonator
Preview not available

Abstract

The cavity resonator used in this investigation is a silver-plated steel cylinder 6· 5 cm. in diameter and of adjustable length. Resonance in the H011 mode is established at a frequency in the region of 9000 Mc./sec., and the length is then varied to give successive resonances at half wave-length intervals. The wave-length is thus determined and this, together with the frequency, the diameter and a correction term involving the sharpness of resonance, enables the velocity to be calculated. This procedure has some advantage over that used previously by Essen & Gordon-Smith in which the measurements were made with a resonator of fixed dimensions. The wave-length is determined only from differences in length, the first resonant length not being used, and in this way certain end-effects, such as those due to the coupling loops and to surface imperfections, are eliminated or greatly reduced. Moreover, by using different frequencies, or different modes at the same frequency, the diameter can be eliminated from the calculations and a value of c thus obtained in terms of frequency and length both of which can be measured with high precision. The result obtained is 299, 792· 5 ± 3 km./sec., and is thus in close agreement with that obtained by Essen & Gordon-Smith with a fixed cavity and also with the value of c determined recently by Bergstrand with an optical method.

Page Thumbnails

  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271
  • Thumbnail: Page 
272
    272
  • Thumbnail: Page 
273
    273
  • Thumbnail: Page 
274
    274
  • Thumbnail: Page 
275
    275
  • Thumbnail: Page 
276
    276
  • Thumbnail: Page 
277
    277